Long signaling cascades tend to attenuate retroactivity.

نویسندگان

  • Hamid R Ossareh
  • Alejandra C Ventura
  • Sofia D Merajver
  • Domitilla Del Vecchio
چکیده

Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling architectures that transmit unidirectional information

A signaling pathway transmits information from an upstream system to downstream systems, ideally unidirectionally. A key bottleneck to unidirectional transmission is retroactivity, which is the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the question of whether signaling pathways have developed specialized architectures ...

متن کامل

Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity

A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized ar...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Modularity in Complex Gene Transcription Networks

A promising approach to decipher the complexity of biomolecular networks is to predict their behavior from that of the composing modules. Unfortunately, the behavior of a module changes once connected in the network [1] due to retroactivity effects. Retroactivity arises whenever two molecules bind describing the effect that these molecules become unavailable for other reactions. Recent experime...

متن کامل

Modular cell biology: retroactivity and insulation

Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 100 7  شماره 

صفحات  -

تاریخ انتشار 2011